3D Stress Distribution Analysis around Blind-holes in Thin Plates Under Non-uniform Tension Loads
نویسنده
چکیده
A three-dimensional photo elasticity analysis and an interactive finite-element package were used in parallel to analyze the stress distribution on the root of blind-holes in thin plates. Experimental analysis was conducted via stress freezing method. The FEM analysis was performed with the ABAQUS commercial code using material properties obtained experimentally as input. The results showed that the maximum stress distribution occurred in three zones: the first one at the beginning of the blind-hole; the second one at the transition zone where the root begins his shape; and at the center of the root.These results are expected to improve blind-hole design according to its function. The combined use of experimental and numerical methods provides more information than each method taken alone. This information is essential when the relation between depth and thickness has to be taken into account. As shown here, the stresses near the free boundary are relevant for failure considerations, for example due to the presence of debris in thin plates or sheets. An analog statement can be made for blind-holes made to fasten metal sheets with bolts or hollows for human prosthesis. KEY WORDSBlind-hole, stress-freezing method, FEM, photoelasticity, stress concentration.
منابع مشابه
Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...
متن کاملOptimization of infinite composite plates with quasi-triangular holes under in-plane loading
This study used particle swarm optimization (PSO) to determine the optimal values of effective design variables acting on the stress distribution around a quasi-triangular hole in an infinite orthotropic plate. These parameters were load angle, hole orientation, bluntness, fiber angle, and material properties, which were ascertained on the basis of an analytical method used by Lekhnitskii [3]. ...
متن کاملThermal Stability of Thin Rectangular Plates with Variable Thickness Made of Functionally Graded Materials
In this research, thermal buckling of thin rectangular plate made of Functionally Graded Materials (FGMs) with linear varying thickness is considered. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The supporting condition of all edges of such a plate is simply supported. ...
متن کاملEffect of Through Stationary Edge and Center Cracks on Static Buckling Strength of Thin Plates under Uniform Axial Compression
Thin plate structures are more widely used in many engineering applications as one of the structural members. Generally, buckling strength of thin shell structures is the ultimate load carrying capacity of these structures. The presence of cracks in a thin shell structure can considerably affect its load carrying capacity. Hence, in this work, static buckling strength of a thin square plate wit...
متن کاملDetermination of Optimal Parameters for Finite Plates with a Quasi-Square Hole
This paper aims at optimizing the parameters involved in stress analysis of perforated plates, in order to achieve the least amount of stress around the square-shaped holes located in a finite isotropic plate using metaheuristic optimization algorithms. Metaheuristics may be classified into three main classes: evolutionary, physics-based, and swarm intelligence algorithms. This research uses Ge...
متن کامل